RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly
نویسندگان
چکیده
Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops.
منابع مشابه
RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants
The whitefly Bemisia tabaci (Genn.) is a pest and vector of plant viruses to crop and ornamental plants worldwide. Using RNA interference (RNAi) to down regulate whitefly genes by expressing their homologous double stranded RNAs in plants has great potential for management of whiteflies to reduce plant virus disease spread. Using a Tobacco rattle virus-derived plasmid for in planta transient ex...
متن کاملExpression of dsRNA in recombinant Isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci
BACKGROUND RNA interference (RNAi) technology shows a great potential in controlling agricultural pests, despite the difficulty of introducing exogenous dsRNA/siRNA into target pests. Isaria fumosorosea is a common fungal pathogen of the B-biotype Bemisia tabaci (whitefly), which is a widespread pest. Entomopathogenic fungi directly penetrate the cuticle and invade insect hemocoel. Application ...
متن کاملTranscriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly)
The whitefly (Bemisia tabaci) causes tremendous damage to cotton production worldwide. However, very limited information is available about how plants perceive and defend themselves from this destructive pest. In this study, the transcriptomic differences between two cotton cultivars that exhibit either strong resistance (HR) or sensitivity (ZS) to whitefly were compared at different time point...
متن کاملTissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius).
The hemipteran whitefly Bemisia tabaci (Gennadius) species complex and the plant viruses they transmit pose major constraints to vegetable and fiber production, worldwide. The whitefly tissue- and developmental-specific gene expression has not been exhaustively studied despite its economic importance. In 2002, a functional genomic project was initiated, which generated several thousands express...
متن کاملKnock down of Whitefly Gut Gene Expression and Mortality by Orally Delivered Gut Gene-Specific dsRNAs
Control of the whitefly Bemisia tabaci (Genn.) agricultural pest and plant virus vector relies on the use of chemical insecticides. RNA-interference (RNAi) is a homology-dependent innate immune response in eukaryotes, including insects, which results in degradation of the corresponding transcript following its recognition by a double-stranded RNA (dsRNA) that shares 100% sequence homology. In t...
متن کامل